MathDB
Convergence of a strange sequence

Source: 2021 SEEMOUS, P4

July 23, 2021
Convergencereal analysis

Problem Statement

For pRp \in \mathbb{R}, let (an)n1(a_n)_{n \ge 1} be the sequence defined by an=1np0nsin(πx)xdx. a_n=\frac{1}{n^p} \int_0^n |\sin( \pi x)|^x \mathrm dx. Determine all possible values of pp for which the series n=1an\sum_{n=1}^\infty a_n converges.