MathDB
Problems
Contests
Undergraduate contests
SEEMOUS
2021 SEEMOUS
Problem 4
Problem 4
Part of
2021 SEEMOUS
Problems
(1)
Convergence of a strange sequence
Source: 2021 SEEMOUS, P4
7/23/2021
For
p
∈
R
p \in \mathbb{R}
p
∈
R
, let
(
a
n
)
n
≥
1
(a_n)_{n \ge 1}
(
a
n
)
n
≥
1
be the sequence defined by
a
n
=
1
n
p
∫
0
n
∣
sin
(
π
x
)
∣
x
d
x
.
a_n=\frac{1}{n^p} \int_0^n |\sin( \pi x)|^x \mathrm dx.
a
n
=
n
p
1
∫
0
n
∣
sin
(
π
x
)
∣
x
d
x
.
Determine all possible values of
p
p
p
for which the series
∑
n
=
1
∞
a
n
\sum_{n=1}^\infty a_n
∑
n
=
1
∞
a
n
converges.
Convergence
real analysis