MathDB
Putnam 2006 A5

Source:

December 4, 2006
PutnamtrigonometryalgebrapolynomialratioinductionVieta

Problem Statement

Let nn be a positive odd integer and let θ\theta be a real number such that θ/π\theta/\pi is irrational. Set ak=tan(θ+kπ/n), k=1,2,n.a_{k}=\tan(\theta+k\pi/n),\ k=1,2\dots,n. Prove that a1+a2++ana1a2an\frac{a_{1}+a_{2}+\cdots+a_{n}}{a_{1}a_{2}\cdots a_{n}} is an integer, and determine its value.