MathDB
Problems
Contests
Undergraduate contests
Putnam
2006 Putnam
A5
A5
Part of
2006 Putnam
Problems
(1)
Putnam 2006 A5
Source:
12/4/2006
Let
n
n
n
be a positive odd integer and let
θ
\theta
θ
be a real number such that
θ
/
π
\theta/\pi
θ
/
π
is irrational. Set
a
k
=
tan
(
θ
+
k
π
/
n
)
,
k
=
1
,
2
…
,
n
.
a_{k}=\tan(\theta+k\pi/n),\ k=1,2\dots,n.
a
k
=
tan
(
θ
+
kπ
/
n
)
,
k
=
1
,
2
…
,
n
.
Prove that
a
1
+
a
2
+
⋯
+
a
n
a
1
a
2
⋯
a
n
\frac{a_{1}+a_{2}+\cdots+a_{n}}{a_{1}a_{2}\cdots a_{n}}
a
1
a
2
⋯
a
n
a
1
+
a
2
+
⋯
+
a
n
is an integer, and determine its value.
Putnam
trigonometry
algebra
polynomial
ratio
induction
Vieta