MathDB
Today's calculation of Integral 677

Source:

February 7, 2011
calculusintegrationtrigonometrylimitcalculus computations

Problem Statement

Let a, ba,\ b be positive real numbers with a<ba<b. Define the definite integrals I1, I2, I3I_1,\ I_2,\ I_3 by I1=absin (x2) dx, I2=abcos (x2)x2 dx, I3=absin (x2)x4 dxI_1=\int_a^b \sin\ (x^2)\ dx,\ I_2=\int_a^b \frac{\cos\ (x^2)}{x^2}\ dx,\ I_3=\int_a^b \frac{\sin\ (x^2)}{x^4}\ dx.
(1) Find the value of I1+12I2I_1+\frac 12I_2 in terms of a, ba,\ b.
(2) Find the value of I232I3I_2-\frac 32I_3 in terms of a, ba,\ b.
(3) For a positive integer nn, define Kn=2nπ2(n+1)πsin (x2) dx+342nπ2(n+1)πsin (x2)x4 dxK_n=\int_{\sqrt{2n\pi}}^{\sqrt{2(n+1)\pi}} \sin\ (x^2)\ dx+\frac 34\int_{\sqrt{2n\pi}}^{\sqrt{2(n+1)\pi}}\frac{\sin\ (x^2)}{x^4}\ dx.
Find the value of limn2nπ2nπKn\lim_{n\to\infty} 2n\pi \sqrt{2n\pi} K_n.
2011 Tokyo University of Science entrance exam/Information Sciences, Applied Chemistry, Mechanical Enginerring, Civil Enginerring