Let a, b be positive real numbers with a<b. Define the definite integrals I1, I2, I3 by
I1=∫absin (x2) dx, I2=∫abx2cos (x2) dx, I3=∫abx4sin (x2) dx.(1) Find the value of I1+21I2 in terms of a, b.(2) Find the value of I2−23I3 in terms of a, b.(3) For a positive integer n, define Kn=∫2nπ2(n+1)πsin (x2) dx+43∫2nπ2(n+1)πx4sin (x2) dx.Find the value of limn→∞2nπ2nπKn.2011 Tokyo University of Science entrance exam/Information Sciences, Applied Chemistry, Mechanical Enginerring, Civil Enginerring calculusintegrationtrigonometrylimitcalculus computations