MathDB
2015 Azerbaijan JBMO TST

Source: 2015 Azerbaijan JBMO TST

May 2, 2015
algebrainequalitiesAzerbaijan

Problem Statement

With the conditions a,b,cR+a,b,c\in\mathbb{R^+} and a+b+c=1a+b+c=1, prove that 7+2b1+a+7+2c1+b+7+2a1+c694\frac{7+2b}{1+a}+\frac{7+2c}{1+b}+\frac{7+2a}{1+c}\geq\frac{69}{4}