MathDB
Problems
Contests
National and Regional Contests
Romania Contests
Romania - Local Contests
SNSB Admissions
2003 SNSB Admission
4
Again, Lambda set
Again, Lambda set
Source: SNSB Admission 2003
October 8, 2019
complex analysis
Problem Statement
Consider
Λ
=
{
λ
∈
Hol
[
C
⟶
C
]
∣
z
∈
C
⟹
∣
λ
(
z
)
∣
≤
e
∣
Im
(
z
)
∣
}
.
\Lambda = \left\{ \lambda\in\text{Hol} \left[ \mathbb{C}\longrightarrow\mathbb{C} \right] |z\in\mathbb{C}\implies |\lambda (z)|\le e^{|\text{Im}(z)|} \right\} .
Λ
=
{
λ
∈
Hol
[
C
⟶
C
]
∣
z
∈
C
⟹
∣
λ
(
z
)
∣
≤
e
∣
Im
(
z
)
∣
}
.
Prove that
g
∈
Λ
g\in\Lambda
g
∈
Λ
implies
g
′
∈
Λ
.
g'\in\Lambda .
g
′
∈
Λ.
Back to Problems
View on AoPS