MathDB

2003 SNSB Admission

Part of SNSB Admissions

Subcontests

(6)
6
1

Complex properties of the sine function

Let be a function ξ:RR \xi:\mathbb{R}\to\mathbb{R} of class C C^{\infty } such that dnξdxn(x0)1=dξdx(0), \left| \frac{d^n\xi }{dx^n} \left( x_0 \right) \right|\le 1=\frac{d\xi}{dx}(0) , for any real numbers x0, x_0, and all natural numbers n, n, and let be the function h:CC,h(z)=1+nN(znn!dnξdxn(0)). h:\mathbb{C}\longrightarrow\mathbb{C} , h(z)=1+\sum_{n\in\mathbb{N}} \left(\frac{z^n}{n!}\cdot\frac{d^n\xi }{dx^n} \left( 0 \right)\right) .
a) Show that h h is well-defined and analytic. b) Prove that hR=ξR. h\bigg|_{\mathbb{R}} =\xi\bigg|_{\mathbb{R}} .
c) Demonstrate that ddt(ξcos)(t0)=4pZ(1)pξ((1+2p)π2)((1+2p)π2t0)2, \frac{d}{dt}\left( \frac{\xi }{\cos} \right)\left( t_0 \right) =4\sum_{p\in\mathbb{Z}}\frac{(-1)^p\xi\left( \frac{(1+2p)\pi}{2} \right)}{\left( (1+2p)\pi -2t_0\right)^2} , for any t0(π2,π2) t_0\in\left( -\frac{\pi }{2} ,\frac{\pi }{2} \right) and that pZ(1)p(ξ((1+2p)π2))21+2p=π2. \sum_{p\in\mathbb{Z}} \frac{(-1)^p\left(\xi\left( \frac{(1+2p)\pi}{2} \right)\right)^2}{1+2p} =\frac{\pi }{2} .
d) Deduce that ξ((1+2p)π2)=(1)p, \xi\left( \frac{(1+2p)\pi}{2} \right)=(-1)^p, for any integer p, p, and that ddt(ξcos)(t0)=ddt(sincos)(t0), \frac{d}{dt}\left( \frac{\xi }{\cos} \right)\left( t_0 \right) =\frac{d}{dt}\left( \frac{\sin }{\cos} \right)\left( t_0 \right) , for any t0(π2,π2). t_0\in\left( -\frac{\pi }{2} ,\frac{\pi }{2} \right) .
e) Conclude that ξR=sinR. \xi\bigg|_\mathbb{R} =\sin\bigg|_\mathbb{R} .