Given a natural number n≥2. Let a1,a2,…,an, b1,b2,…,bn be real numbers. Prove that the following conditions are equivalent:- For any real numbers x1≤x2≤…≤xn holds the inequality
i=1∑naixi≤i=1∑nbixi.- For every natural number k∈{1,2,…,n−1} holds the inequality
i=1∑kai≥i=1∑kbi, and i=1∑nai=i=1∑nbi.