MathDB
Problems
Contests
National and Regional Contests
Poland Contests
Poland - Second Round
1992 Poland - Second Round
2
2
Part of
1992 Poland - Second Round
Problems
(1)
sum a_i x_i <= sum b_i x_i.
Source: Polish MO Recond Round 1992 p2
9/9/2024
Given a natural number
n
≥
2
n \geq 2
n
≥
2
. Let
a
1
,
a
2
,
…
,
a
n
a_1, a_2, \ldots , a_n
a
1
,
a
2
,
…
,
a
n
,
b
1
,
b
2
,
…
,
b
n
b_1, b_2, \ldots , b_n
b
1
,
b
2
,
…
,
b
n
be real numbers. Prove that the following conditions are equivalent:- For any real numbers
x
1
≤
x
2
≤
…
≤
x
n
x_1 \leq x_2 \leq \ldots \leq x_n
x
1
≤
x
2
≤
…
≤
x
n
holds the inequality
∑
i
=
1
n
a
i
x
i
≤
∑
i
=
1
n
b
i
x
i
.
\sum_{i=1}^n a_i x_i \leq \sum_{i=1}^n b_i x_i.
i
=
1
∑
n
a
i
x
i
≤
i
=
1
∑
n
b
i
x
i
.
- For every natural number
k
∈
{
1
,
2
,
…
,
n
−
1
}
k\in \{1,2,\ldots, n-1\}
k
∈
{
1
,
2
,
…
,
n
−
1
}
holds the inequality
∑
i
=
1
k
a
i
≥
∑
i
=
1
k
b
i
,
and
∑
i
=
1
n
a
i
=
∑
i
=
1
n
b
i
.
\sum_{i=1}^k a_i \geq \sum_{i=1}^k b_i, \ \ \text{ and } \\ \ \sum_{i=1}^n a_i = \sum_{i=1 }^n b_i.
i
=
1
∑
k
a
i
≥
i
=
1
∑
k
b
i
,
and
i
=
1
∑
n
a
i
=
i
=
1
∑
n
b
i
.
algebra
inequalities