MathDB
2017-2018 Spring OMO Problem 22

Source:

April 3, 2018

Problem Statement

Let p=9001p = 9001 be a prime number and let Z/pZ\mathbb{Z}/p\mathbb{Z} denote the additive group of integers modulo pp. Furthermore, if A,BZ/pZA, B \subset \mathbb{Z}/p\mathbb{Z}, then denote A+B={a+b(modp)aA,bB}.A+B = \{a+b \pmod{p} | a \in A, b \in B \}. Let s1,s2,,s8s_1, s_2, \dots, s_8 are positive integers that are at least 22. Yang the Sheep notices that no matter how he chooses sets T1,T2,,T8Z/pZT_1, T_2, \dots, T_8\subset \mathbb{Z}/p\mathbb{Z} such that Ti=si|T_i| = s_i for 1i8,1 \le i \le 8, T1+T2++T7T_1+T_2+\dots + T_7 is never equal to Z/pZ\mathbb{Z}/p\mathbb{Z}, but T1+T2++T8T_1+T_2+\dots+T_8 must always be exactly Z/pZ\mathbb{Z}/p\mathbb{Z}. What is the minimum possible value of s8s_8?
Proposed by Yang Liu