MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2010 Today's Calculation Of Integral
644
Today's calculation of Integral 644
Today's calculation of Integral 644
Source:
September 4, 2010
calculus
integration
trigonometry
inequalities
logarithms
calculus computations
Problem Statement
For a constant
p
p
p
such that
∫
1
p
e
x
d
x
=
1
\int_1^p e^xdx=1
∫
1
p
e
x
d
x
=
1
, prove that
(
∫
1
p
e
x
cos
x
d
x
)
2
+
(
∫
1
p
e
x
sin
x
d
x
)
2
>
1
2
.
\left(\int_1^p e^x\cos x\ dx\right)^2+\left(\int_1^p e^x\sin x\ dx\right)^2>\frac 12.
(
∫
1
p
e
x
cos
x
d
x
)
2
+
(
∫
1
p
e
x
sin
x
d
x
)
2
>
2
1
.
Own
Back to Problems
View on AoPS