MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2010 Today's Calculation Of Integral
644
644
Part of
2010 Today's Calculation Of Integral
Problems
(1)
Today's calculation of Integral 644
Source:
9/4/2010
For a constant
p
p
p
such that
∫
1
p
e
x
d
x
=
1
\int_1^p e^xdx=1
∫
1
p
e
x
d
x
=
1
, prove that
(
∫
1
p
e
x
cos
x
d
x
)
2
+
(
∫
1
p
e
x
sin
x
d
x
)
2
>
1
2
.
\left(\int_1^p e^x\cos x\ dx\right)^2+\left(\int_1^p e^x\sin x\ dx\right)^2>\frac 12.
(
∫
1
p
e
x
cos
x
d
x
)
2
+
(
∫
1
p
e
x
sin
x
d
x
)
2
>
2
1
.
Own
calculus
integration
trigonometry
inequalities
logarithms
calculus computations