Source: 2022 3rd OMpD L2 P4 / L3 P2 - Brazil - Olimpíada Matemáticos por Diversão
July 8, 2023
algebrainequalitiespositive real
Problem Statement
We say that a sextuple of positive real numbers (a1,a2,a3,b1,b2,b3) is <spanclass=′latex−italic′>phika</span> if a1+a2+a3=b1+b2+b3=1.(a) Prove that there exists a <spanclass=′latex−italic′>phika</span> sextuple (a1,a2,a3,b1,b2,b3) such that:
a1(b1+a2)+a2(b2+a3)+a3(b3+a1)>1−202220221(b) Prove that for every <spanclass=′latex−italic′>phika</span> sextuple (a1,a2,a3,b1,b2,b3), we have:
a1(b1+a2)+a2(b2+a3)+a3(b3+a1)<1