MathDB

2

Part of 2022 OMpD

Problems(3)

Phika sextuplets satisfy a strange inequality

Source: 2022 3rd OMpD L2 P4 / L3 P2 - Brazil - Olimpíada Matemáticos por Diversão

7/8/2023
We say that a sextuple of positive real numbers (a1,a2,a3,b1,b2,b3)(a_1, a_2, a_3, b_1, b_2, b_3) is <spanclass=latexitalic>phika</span><span class='latex-italic'>phika</span> if a1+a2+a3=b1+b2+b3=1a_1 + a_2 + a_3 = b_1 + b_2 + b_3 = 1.
(a) Prove that there exists a <spanclass=latexitalic>phika</span><span class='latex-italic'>phika</span> sextuple (a1,a2,a3,b1,b2,b3)(a_1, a_2, a_3, b_1, b_2, b_3) such that: a1(b1+a2)+a2(b2+a3)+a3(b3+a1)>1120222022a_1(\sqrt{b_1} + a_2) + a_2(\sqrt{b_2} + a_3) + a_3(\sqrt{b_3} + a_1) > 1 - \frac{1}{2022^{2022}}
(b) Prove that for every <spanclass=latexitalic>phika</span><span class='latex-italic'>phika</span> sextuple (a1,a2,a3,b1,b2,b3)(a_1, a_2, a_3, b_1, b_2, b_3), we have: a1(b1+a2)+a2(b2+a3)+a3(b3+a1)<1a_1(\sqrt{b_1} + a_2) + a_2(\sqrt{b_2} + a_3) + a_3(\sqrt{b_3} + a_1) < 1
algebrainequalitiespositive real
&lt;FCE=? &lt;FEC=&lt; CEB$ , &lt; DFC=&lt; CFE in rectangle ABCD

Source: 2022 2nd OMpD L2 P2 - Brazil - Olimp&iacute;ada Matem&aacute;ticos por Divers&atilde;o

10/13/2022
Let ABCDABCD be a rectangle. The point EE lies on side AB \overline{AB} and the point FF is lies side AD \overline{AD}, such that FEC=CEB\angle FEC=\angle CEB and DFC=CFE\angle DFC=\angle CFE. Determine the measure of the angle FCE\angle FCE and the ratio AD/ABAD/AB.
geometryrectangleequal anglesangles
Prove that A^p \neq I_p

Source: 2022 3rd OMpD LU P2 - Brazil - Olimp&iacute;ada Matem&aacute;ticos por Divers&atilde;o

7/8/2023
Let p3p \geq 3 be a prime number and let AA be a matrix of order pp with complex entries. Assume that Tr(A)=0\text{Tr}(A) = 0 and det(AIp)0\det(A - I_p) \neq 0. Prove that ApIpA^p \neq I_p.
Note: Tr(A)\text{Tr}(A) is the sum of the main diagonal elements of AA and IpI_p is the identity matrix of order pp.
linear algebraalgebramatrixMatrix algebratrace