MathDB
Romanian National Olympiad 2024 - Grade 10 - Problem 4

Source: Romanian National Olympiad 2024 - Grade 10 - Problem 4

April 6, 2024
functionalgebrafunctionspermutationsbasiscombinatorics

Problem Statement

We consider an integer n3,n \ge 3, the set S={1,2,3,,n}S=\{1,2,3,\ldots,n\} and the set F\mathcal{F} of the functions from SS to S.S. We say that GF\mathcal{G} \subset \mathcal{F} is a generating set for HF\mathcal{H} \subset \mathcal{F} if any function in H\mathcal{H} can be represented as a composition of functions from G.\mathcal{G}.
a) Let the functions a:SS,a:S \to S, a(n1)=n,a(n-1)=n, a(n)=n1a(n)=n-1 and a(k)=ka(k)=k for kS{n1,n}k \in S \setminus \{n-1,n\} and b:SS,b:S \to S, b(n)=1b(n)=1 and b(k)=k+1b(k)=k+1 for kS{n}.k \in S \setminus \{n\}. Prove that {a,b}\{a,b\} is a generating set for the set B\mathcal{B} of bijective functions of F.\mathcal{F}. b) Prove that the smallest number of elements that a generating set of F\mathcal{F} has is 3.3.