MathDB

Problems(4)

Romanian National Olympiad 2024 - Grade 10 - Problem 4

Source: Romanian National Olympiad 2024 - Grade 10 - Problem 4

4/6/2024
We consider an integer n3,n \ge 3, the set S={1,2,3,,n}S=\{1,2,3,\ldots,n\} and the set F\mathcal{F} of the functions from SS to S.S. We say that GF\mathcal{G} \subset \mathcal{F} is a generating set for HF\mathcal{H} \subset \mathcal{F} if any function in H\mathcal{H} can be represented as a composition of functions from G.\mathcal{G}.
a) Let the functions a:SS,a:S \to S, a(n1)=n,a(n-1)=n, a(n)=n1a(n)=n-1 and a(k)=ka(k)=k for kS{n1,n}k \in S \setminus \{n-1,n\} and b:SS,b:S \to S, b(n)=1b(n)=1 and b(k)=k+1b(k)=k+1 for kS{n}.k \in S \setminus \{n\}. Prove that {a,b}\{a,b\} is a generating set for the set B\mathcal{B} of bijective functions of F.\mathcal{F}. b) Prove that the smallest number of elements that a generating set of F\mathcal{F} has is 3.3.
functionalgebrafunctionspermutationsbasiscombinatorics
Romanian National Olympiad 2024 - Grade 9 - Problem 4

Source: Romanian National Olympiad 2024 - Grade 9 - Problem 4

4/6/2024
Let aa be a given positive integer. We consider the sequence (xn)n1(x_n)_{n \ge 1} defined by xn=11+na,x_n=\frac{1}{1+na}, for every positive integer n.n. Prove that for any integer k3,k \ge 3, there exist positive integers n1<n2<<nkn_1<n_2<\ldots<n_k such that the numbers xn1,xn2,,xnkx_{n_1},x_{n_2},\ldots,x_{n_k} are consecutive terms in an arithmetic progression.
algebraArithmetic ProgressionSequence
Romanian National Olympiad 2024 - Grade 11 - Problem 4

Source: Romanian National Olympiad 2024 - Grade 11 - Problem 4

4/5/2024
Let f,g:RRf,g:\mathbb{R}\to\mathbb{R} be functions with g(x)=2f(x)+f(x2),g(x)=2f(x)+f(x^2), for all xR.x \in \mathbb{R}.
a) Prove that, if ff is bounded in a neighbourhood of the origin and gg is continuous in the origin, then ff is continuous in the origin. b) Provide an example of function ff, discontinuous in the origin, for which the function gg is continuous in the origin.
functionreal analysiscontinuity
x^n=(x^2+1)^n if and only if ...

Source: Romanian National Olympiad 2024 - Grade 12 - Problem 4

4/3/2024
Let L\mathbb{L} be a finite field with qq elements. Prove that:
a) If q3(mod4)q \equiv 3 \pmod 4 and n2n \ge 2 is a positive integer divisible by q1,q-1, then xn=(x2+1)nx^n=(x^2+1)^n for all xL×.x \in \mathbb{L}^{\times}.
b) If there exists a positive integer n2n \ge 2 such that xn=(x2+1)nx^n=(x^2+1)^n for all xL×,x \in \mathbb{L}^{\times}, then q3(mod4)q \equiv 3 \pmod 4 and q1q-1 divides n.n.
finite fieldsabstract algebra