MathDB
Today's calculation of Integral 374

Source: 1996 Osaka University entrance exam/Science

September 7, 2008
calculusintegrationlogarithmslimitinequalitiescalculus computations

Problem Statement

Let n2 n\geq 2 be positive integers. (1) Prove that n\ln n \minus{} n\plus{}1<\sum_{k\equal{}1}^n \ln k<(n\plus{}1)\ln n \minus{} n\plus{}1. (2) Find limn(n!)1nlnn \lim_{n\to\infty} (n!)^{\frac{1}{n\ln n}}.