MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2008 Today's Calculation Of Integral
374
374
Part of
2008 Today's Calculation Of Integral
Problems
(1)
Today's calculation of Integral 374
Source: 1996 Osaka University entrance exam/Science
9/7/2008
Let
n
≥
2
n\geq 2
n
≥
2
be positive integers. (1) Prove that n\ln n \minus{} n\plus{}1<\sum_{k\equal{}1}^n \ln k<(n\plus{}1)\ln n \minus{} n\plus{}1. (2) Find
lim
n
→
∞
(
n
!
)
1
n
ln
n
\lim_{n\to\infty} (n!)^{\frac{1}{n\ln n}}
lim
n
→
∞
(
n
!
)
n
l
n
n
1
.
calculus
integration
logarithms
limit
inequalities
calculus computations