MathDB
CIIM 2015 Problem 4

Source:

August 9, 2016
CIIM 2015undergraduate

Problem Statement

Let f:RRf:\mathbb{R} \to \mathbb{R} a continuos function and α\alpha a real number such that limxf(x)=limxf(x)=α.\lim_{x\to\infty}f(x) = \lim_{x\to-\infty}f(x) = \alpha. Prove that for any r>0,r > 0, there exists x,yRx,y \in \mathbb{R} such that yx=ry-x = r and f(x)=f(y).f(x) = f(y).