Subcontests
(6)CIIM 2015 Problem 6
Show that there exists a real C>1 that satisfy the following property: if n>1 and a0<a1<⋯<an are positive integers such that a01,a11,…,an1 are in arithmetic progression, then a0>Cn. CIIM 2015 Problem 3
Consider the matrices A = \left(\begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right) \\ \mbox{ and } \\ B = \left(\begin{matrix} 1 & 0 \\ 2 & 1 \end{matrix}\right).
Let k≥1 an integer. Prove that for any nonzero i1,i2,…,ik−1,j1,j2,…,jk and any integers i0,ik it holds that Ai0Bj1Ai1Bj2⋯Aik−1BikAik=I.