MathDB
BxMo 2015, Problem 1

Source: Benelux Mathematical Olympiad 2015, Problem 1

May 10, 2015
algebra

Problem Statement

Determine the smallest positive integer qq with the following property: for every integer mm with 1m10061\leqslant m\leqslant 1006, there exists an integer nn such that m1007q<n<m+11008q\dfrac{m}{1007}q<n<\dfrac{m+1}{1008}q.