MathDB
Problems
Contests
International Contests
Benelux
2015 Benelux
1
1
Part of
2015 Benelux
Problems
(1)
BxMo 2015, Problem 1
Source: Benelux Mathematical Olympiad 2015, Problem 1
5/10/2015
Determine the smallest positive integer
q
q
q
with the following property: for every integer
m
m
m
with
1
⩽
m
⩽
1006
1\leqslant m\leqslant 1006
1
⩽
m
⩽
1006
, there exists an integer
n
n
n
such that
m
1007
q
<
n
<
m
+
1
1008
q
\dfrac{m}{1007}q<n<\dfrac{m+1}{1008}q
1007
m
q
<
n
<
1008
m
+
1
q
.
algebra