MathDB
Miklos Schweitzer 1963_8

Source:

September 19, 2008
trigonometryfunctionintegrationsearchreal analysisreal analysis unsolved

Problem Statement

Let the Fourier series a02+k1(akcoskx+bksinkx) \frac{a_0}{2}+ \sum _{k\geq 1}(a_k\cos kx+b_k \sin kx) of a function f(x) f(x) be absolutely convergent, and let ak2+bk2ak+12+bk+12  (k=1,2,...) . a^2_k+b^2_k \geq a_{k+1}^2+b_{k+1}^2 \;(k=1,2,...)\ . Show that 1h02π(f(x+h)f(xh))2dx  (h>0) \frac1h \int_0^{2\pi} (f(x+h)-f(x-h))^2dx \;(h>0) is uniformly bounded in h h. [K. Tandori]