Let the Fourier series 2a0+k≥1∑(akcoskx+bksinkx) of a function f(x) be
absolutely convergent, and let ak2+bk2≥ak+12+bk+12(k=1,2,...) . Show that h1∫02π(f(x+h)−f(x−h))2dx(h>0) is uniformly bounded in h. [K. Tandori] trigonometryfunctionintegrationsearchreal analysisreal analysis unsolved