MathDB
Prove that $\frac{AC}{DD_2}=\frac{AB}{DD_1}+\frac{BC}{DD_3}$.

Source: Moldova TST 1994

August 8, 2023
geometry

Problem Statement

Inside the triangle DD1D3DD_1D_3 the cevian DD2DD_2 is constructed. Perpendiculars from D1,D2D_1, D_2 and D3D_3 to lines DD1,DD2DD_1, DD_2 and DD3DD_3, respectively, intersect in points A,BA,B and CC such that ABDD1,ACDD2,BCDD3AB\perp DD_1, AC\perp DD_2, BC\perp DD_3. Prove that ACDD2=ABDD1+BCDD3\frac{AC}{DD_2}=\frac{AB}{DD_1}+\frac{BC}{DD_3}.