MathDB
Problems
Contests
National and Regional Contests
Moldova Contests
Moldova Team Selection Test
1994 Moldova Team Selection Test
6
6
Part of
1994 Moldova Team Selection Test
Problems
(1)
Prove that $\frac{AC}{DD_2}=\frac{AB}{DD_1}+\frac{BC}{DD_3}$.
Source: Moldova TST 1994
8/8/2023
Inside the triangle
D
D
1
D
3
DD_1D_3
D
D
1
D
3
the cevian
D
D
2
DD_2
D
D
2
is constructed. Perpendiculars from
D
1
,
D
2
D_1, D_2
D
1
,
D
2
and
D
3
D_3
D
3
to lines
D
D
1
,
D
D
2
DD_1, DD_2
D
D
1
,
D
D
2
and
D
D
3
DD_3
D
D
3
, respectively, intersect in points
A
,
B
A,B
A
,
B
and
C
C
C
such that
A
B
⊥
D
D
1
,
A
C
⊥
D
D
2
,
B
C
⊥
D
D
3
AB\perp DD_1, AC\perp DD_2, BC\perp DD_3
A
B
⊥
D
D
1
,
A
C
⊥
D
D
2
,
BC
⊥
D
D
3
. Prove that
A
C
D
D
2
=
A
B
D
D
1
+
B
C
D
D
3
\frac{AC}{DD_2}=\frac{AB}{DD_1}+\frac{BC}{DD_3}
D
D
2
A
C
=
D
D
1
A
B
+
D
D
3
BC
.
geometry