MathDB
Problems
Contests
National and Regional Contests
USA Contests
USA - Other Middle and High School Contests
Math Prize For Girls Problems
2016 Math Prize for Girls Problems
20
Math Prize 2016 Problem 20
Math Prize 2016 Problem 20
Source:
September 12, 2016
Math Prize for Girls
Problem Statement
Let
a
1
a_1
a
1
,
a
2
a_2
a
2
,
a
3
a_3
a
3
,
a
4
a_4
a
4
, and
a
5
a_5
a
5
be random integers chosen independently and uniformly from the set
{
0
,
1
,
2
,
…
,
23
}
\{ 0, 1, 2, \dots, 23 \}
{
0
,
1
,
2
,
…
,
23
}
. (Note that the integers are not necessarily distinct.) Find the probability that
∑
k
=
1
5
cis
(
a
k
π
12
)
=
0.
\sum_{k=1}^{5} \operatorname{cis} \Bigl( \frac{a_k \pi}{12} \Bigr) = 0.
k
=
1
∑
5
cis
(
12
a
k
π
)
=
0.
(Here
cis
θ
\operatorname{cis} \theta
cis
θ
means
cos
θ
+
i
sin
θ
\cos \theta + i \sin \theta
cos
θ
+
i
sin
θ
.)
Back to Problems
View on AoPS