MathDB
Problems
Contests
National and Regional Contests
USA Contests
USA - Other Middle and High School Contests
Math Prize For Girls Problems
2016 Math Prize for Girls Problems
20
20
Part of
2016 Math Prize for Girls Problems
Problems
(1)
Math Prize 2016 Problem 20
Source:
9/12/2016
Let
a
1
a_1
a
1
,
a
2
a_2
a
2
,
a
3
a_3
a
3
,
a
4
a_4
a
4
, and
a
5
a_5
a
5
be random integers chosen independently and uniformly from the set
{
0
,
1
,
2
,
…
,
23
}
\{ 0, 1, 2, \dots, 23 \}
{
0
,
1
,
2
,
…
,
23
}
. (Note that the integers are not necessarily distinct.) Find the probability that
∑
k
=
1
5
cis
(
a
k
π
12
)
=
0.
\sum_{k=1}^{5} \operatorname{cis} \Bigl( \frac{a_k \pi}{12} \Bigr) = 0.
k
=
1
∑
5
cis
(
12
a
k
π
)
=
0.
(Here
cis
θ
\operatorname{cis} \theta
cis
θ
means
cos
θ
+
i
sin
θ
\cos \theta + i \sin \theta
cos
θ
+
i
sin
θ
.)
Math Prize for Girls