MathDB
SEEMOUS 2014(P3)

Source:

April 30, 2015
linear algebramatrix

Problem Statement

Let AMn(C)A\in M_n(\mathbb{C}) and aCa\in \mathbb{C} such that AA=2aInA-A^*=2aI_n , where A=(A)TA^*=(\overline{A})^T and InI_n is identity matrix. (i) Show that detAan|\det A|\ge |a|^n . (ii) Show that if detA=an|\det A|=|a|^n then A=aInA=aI_n.