Subcontests
(4)determinant of matrix, values of function
Let n be a nonzero natural number and f:R→R∖{0} be a function such that f(2014)=1−f(2013). Let x1,x2,x3,…,xn be real numbers not equal to each other. If
1+f(x1)f(x1)f(x1)⋮f(x1)f(x2)1+f(x2)f(x2)⋮f(x2)f(x3)f(x3)1+f(x3)⋮f(x3)⋯⋯⋯⋱⋯f(xn)f(xn)f(xn)⋮1+f(xn)=0,prove that f is not continuous.