Romanian District Olympiad
Source: Grade XII
March 17, 2010
functionintegrationinequalitiesreal analysisreal analysis unsolved
Problem Statement
Let a derivable function such that f(0)\equal{}f(1), \int_0^1f(x)dx\equal{}0 and .
i)Prove that the function g: [0,1]\rightarrow \mathbb{R}\ ,\ g(x)\equal{}f(x)\minus{}x is strictly decreasing.
ii)Prove that for each integer number , we have:
\left|\sum_{k\equal{}0}^{n\minus{}1}f\left(\frac{k}{n}\right)\right|<\frac{1}{2}