4
Part of 2010 District Olympiad
Problems(6)
angle bisector wanted, AD=CD=CB, AB // CD (2010 Romania District VII P4)
Source:
5/19/2020
We consider the quadrilateral , with and . Points and belong to the segments and so that angles . Prove that:
a) ,
b) if , then is the bisector of the angle .
geometryangle bisectorequal anglesequal segments
a + 2b - b^2 =\sqrt{2a + a^2 + |2a + 1 - 2b|} N diphantine
Source: 2010 Romania District VIII p4
9/1/2024
Find all non negative integers such that
Diophantine equationnumber theorydiophantine
Romania District Olympiad 2010
Source: Grade IX
3/13/2010
Determine all the functions such that
f(n)\plus{}f(n\plus{}1)\plus{}f(f(n))\equal{}3n\plus{}1, \forall n\in \mathbb{N}.
functioninductionalgebra proposedalgebra
Romania District Olympiad 2010
Source: Grade X
3/13/2010
Consider the sequence a_n\equal{}\left|z^n\plus{}\frac{1}{z^n}\right|\ ,\ n\ge 1, where is given.
i) Prove that if , then:
a_{n\plus{}1}<\frac{a_n\plus{}a_{n\plus{}2}}{2}\ ,\ (\forall)n\in \mathbb{N}^*
ii) Prove that if there is a such that , then .
searchfunctionalgebra proposedalgebra
Romanian District Olympiad
Source: Grade XI
3/17/2010
Prove that exists sequences with a_n\in \{\minus{}1,\plus{}1\}, for any , such that:
\lim_{n\rightarrow \infty}\left(\sqrt{n\plus{}a_1}\plus{}\sqrt{n\plus{}a_2}\plus{}...\plus{}\sqrt{n\plus{}a_n}\minus{}n\sqrt{n\plus{}a_0}\right)\equal{}\frac{1}{2}
limitcalculuscalculus computations
Romanian District Olympiad
Source: Grade XII
3/17/2010
Let a derivable function such that f(0)\equal{}f(1), \int_0^1f(x)dx\equal{}0 and .
i)Prove that the function g: [0,1]\rightarrow \mathbb{R}\ ,\ g(x)\equal{}f(x)\minus{}x is strictly decreasing.
ii)Prove that for each integer number , we have:
\left|\sum_{k\equal{}0}^{n\minus{}1}f\left(\frac{k}{n}\right)\right|<\frac{1}{2}
functionintegrationinequalitiesreal analysisreal analysis unsolved