MathDB
a modular polynomial

Source: Yugoslav TST 1980 P2

May 29, 2021
number theoryalgebrapolynomial

Problem Statement

Let a,b,c,ma,b,c,m be integers, where m>1m>1. Prove that if an+bn+c0(modm)a^n+bn+c\equiv0\pmod mfor each natural number nn, then b20(modm)b^2\equiv0\pmod m. Must b0(modm)b\equiv0\pmod m also hold?