MathDB
Problems
Contests
National and Regional Contests
Serbia Contests
Serbia Team Selection Test
1980 Yugoslav Team Selection Test
Problem 2
Problem 2
Part of
1980 Yugoslav Team Selection Test
Problems
(1)
a modular polynomial
Source: Yugoslav TST 1980 P2
5/29/2021
Let
a
,
b
,
c
,
m
a,b,c,m
a
,
b
,
c
,
m
be integers, where
m
>
1
m>1
m
>
1
. Prove that if
a
n
+
b
n
+
c
≡
0
(
m
o
d
m
)
a^n+bn+c\equiv0\pmod m
a
n
+
bn
+
c
≡
0
(
mod
m
)
for each natural number
n
n
n
, then
b
2
≡
0
(
m
o
d
m
)
b^2\equiv0\pmod m
b
2
≡
0
(
mod
m
)
. Must
b
≡
0
(
m
o
d
m
)
b\equiv0\pmod m
b
≡
0
(
mod
m
)
also hold?
number theory
algebra
polynomial