MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2010 Today's Calculation Of Integral
634
Today's calculation of Integral 634
Today's calculation of Integral 634
Source:
August 10, 2010
calculus
integration
logarithms
calculus computations
Problem Statement
Prove that :
∫
1
e
(
ln
x
)
n
d
x
=
(
−
1
)
n
−
1
n
!
+
e
∑
m
=
0
n
(
−
1
)
n
−
m
n
!
m
!
(
1
2
)
m
(
n
=
1
,
2
,
⋯
)
\int_1^{\sqrt{e}} (\ln x)^n dx=(-1)^{n-1}n!+\sqrt{e}\sum_{m=0}^{n} (-1)^{n-m}\frac{n!}{m!}\left(\frac 12\right)^m\ (n=1,\ 2,\ \cdots)
∫
1
e
(
ln
x
)
n
d
x
=
(
−
1
)
n
−
1
n
!
+
e
m
=
0
∑
n
(
−
1
)
n
−
m
m
!
n
!
(
2
1
)
m
(
n
=
1
,
2
,
⋯
)
2010 Miyazaki University entrance exam/Medicine
Back to Problems
View on AoPS