MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2010 Today's Calculation Of Integral
634
634
Part of
2010 Today's Calculation Of Integral
Problems
(1)
Today's calculation of Integral 634
Source:
8/10/2010
Prove that :
∫
1
e
(
ln
x
)
n
d
x
=
(
−
1
)
n
−
1
n
!
+
e
∑
m
=
0
n
(
−
1
)
n
−
m
n
!
m
!
(
1
2
)
m
(
n
=
1
,
2
,
⋯
)
\int_1^{\sqrt{e}} (\ln x)^n dx=(-1)^{n-1}n!+\sqrt{e}\sum_{m=0}^{n} (-1)^{n-m}\frac{n!}{m!}\left(\frac 12\right)^m\ (n=1,\ 2,\ \cdots)
∫
1
e
(
ln
x
)
n
d
x
=
(
−
1
)
n
−
1
n
!
+
e
m
=
0
∑
n
(
−
1
)
n
−
m
m
!
n
!
(
2
1
)
m
(
n
=
1
,
2
,
⋯
)
2010 Miyazaki University entrance exam/Medicine
calculus
integration
logarithms
calculus computations