MathDB
CIIM 2013 Problem 4

Source:

August 9, 2016
CIIM 2013CIIMundergraduate

Problem Statement

Let a1,b1,c1,a2,b2,c2a_1,b_1,c_1,a_2,b_2,c_2 be positive real number and F,G:(0,)(0,)F,G:(0,\infty)\to(0,\infty) be to differentiable and positive functions that satisfy the identities: xF=1+a1x+b1y+c1G\frac{x}{F} = 1 + a_1x+ b_1y + c_1G yG=1+a2x+b2y+c2F.\frac{y}{G} = 1 + a_2x+ b_2y + c_2F. Prove that if 0<x1x20 < x_1 \leq x_2 and 0<y2y10 < y_2 \leq y_1, then F(x1,x2)F(x2,y2)F(x_1,x_2) \leq F(x_2,y_2) and G(x1,y1)G(x2,y2).G(x_1,y_1) \geq G(x_2,y_2).