Let a1,b1,c1,a2,b2,c2 be positive real number and F,G:(0,∞)→(0,∞) be to differentiable and positive functions that satisfy the identities: Fx=1+a1x+b1y+c1G Gy=1+a2x+b2y+c2F.
Prove that if 0<x1≤x2 and 0<y2≤y1, then F(x1,x2)≤F(x2,y2) and G(x1,y1)≥G(x2,y2).
CIIM 2013CIIMundergraduate