MathDB
Iran TST 2009-Day4-P2

Source:

May 17, 2009
modular arithmeticnumber theory proposednumber theory

Problem Statement

Let nn be a positive integer. Prove that 352n12n+2(5)32n12n+2(mod2n+4). 3^{\dfrac{5^{2^n}-1}{2^{n+2}}} \equiv (-5)^{\dfrac{3^{2^n}-1}{2^{n+2}}} \pmod{2^{n+4}}.