MathDB
Problems
Contests
National and Regional Contests
Iran Contests
Iran Team Selection Test
2009 Iran Team Selection Test
11
11
Part of
2009 Iran Team Selection Test
Problems
(1)
Iran TST 2009-Day4-P2
Source:
5/17/2009
Let
n
n
n
be a positive integer. Prove that
3
5
2
n
−
1
2
n
+
2
≡
(
−
5
)
3
2
n
−
1
2
n
+
2
(
m
o
d
2
n
+
4
)
.
3^{\dfrac{5^{2^n}-1}{2^{n+2}}} \equiv (-5)^{\dfrac{3^{2^n}-1}{2^{n+2}}} \pmod{2^{n+4}}.
3
2
n
+
2
5
2
n
−
1
≡
(
−
5
)
2
n
+
2
3
2
n
−
1
(
mod
2
n
+
4
)
.
modular arithmetic
number theory proposed
number theory