MathDB
2010 PUMaC Geometry A4/B6: segments in hexagon

Source:

August 21, 2011
geometrytrigonometryratio

Problem Statement

In regular hexagon ABCDEFABCDEF, ACAC, CECE are two diagonals. Points MM, NN are on ACAC, CECE respectively and satisfy AC:AM=CE:CN=rAC: AM = CE: CN = r. Suppose B,M,NB, M, N are collinear, find 100r2100r^2. [asy] size(120); defaultpen(linewidth(0.7)+fontsize(10)); pair D2(pair P) { dot(P,linewidth(3)); return P; } pair A=dir(0), B=dir(60), C=dir(120), D=dir(180), E=dir(240), F=dir(300), N=(4*E+C)/5,M=intersectionpoints(A--C,B--N)[0]; draw(A--B--C--D--E--F--cycle); draw(A--C--E); draw(B--N); label("AA",D2(A),plain.E); label("BB",D2(B),NE); label("CC",D2(C),NW); label("DD",D2(D),W); label("EE",D2(E),SW); label("FF",D2(F),SE); label("MM",D2(M),(0,-1.5)); label("NN",D2(N),SE); [/asy]