2010 PUMaC Geometry A4/B6: segments in hexagon
Source:
August 21, 2011
geometrytrigonometryratio
Problem Statement
In regular hexagon , , are two diagonals. Points , are on , respectively and satisfy . Suppose are collinear, find .
[asy]
size(120); defaultpen(linewidth(0.7)+fontsize(10));
pair D2(pair P) {
dot(P,linewidth(3)); return P;
}
pair A=dir(0), B=dir(60), C=dir(120), D=dir(180), E=dir(240), F=dir(300), N=(4*E+C)/5,M=intersectionpoints(A--C,B--N)[0];
draw(A--B--C--D--E--F--cycle); draw(A--C--E); draw(B--N);
label("",D2(A),plain.E);
label("",D2(B),NE);
label("",D2(C),NW);
label("",D2(D),W);
label("",D2(E),SW);
label("",D2(F),SE);
label("",D2(M),(0,-1.5));
label("",D2(N),SE);
[/asy]