Problems(5)
2010 PUMaC Algebra A4/B6: nested radical
Source:
8/20/2011
Define . Find the smallest integer such that .(Edit: The official question asked for the "smallest integer"; the intended question was the "smallest positive integer".)
quadraticscalculusintegrationalgebraquadratic formula
2010 PUMaC Combinatorics A4: expected value from grid walk
Source:
8/21/2011
Erick stands in the square in the 2nd row and 2nd column of a 5 by 5 chessboard. There are \\begin{tabular}{|p{1em}|p{1em}|p{1em}|p{1em}|p{1em}|}
\hline
\$1 & & & & \$5 \\
\hline
& E & & &\\
\hline
& & & &\\
\hline
& & & &\\
\hline
\$5 & & & & \$1 \\
\hline \end{tabular}m/nmnm+n$.
symmetryprobabilityexpected valuenumber theoryrelatively prime
2010 PUMaC Geometry A4/B6: segments in hexagon
Source:
8/21/2011
In regular hexagon , , are two diagonals. Points , are on , respectively and satisfy . Suppose are collinear, find .
[asy]
size(120); defaultpen(linewidth(0.7)+fontsize(10));
pair D2(pair P) {
dot(P,linewidth(3)); return P;
}
pair A=dir(0), B=dir(60), C=dir(120), D=dir(180), E=dir(240), F=dir(300), N=(4*E+C)/5,M=intersectionpoints(A--C,B--N)[0];
draw(A--B--C--D--E--F--cycle); draw(A--C--E); draw(B--N);
label("",D2(A),plain.E);
label("",D2(B),NE);
label("",D2(C),NW);
label("",D2(D),W);
label("",D2(E),SW);
label("",D2(F),SE);
label("",D2(M),(0,-1.5));
label("",D2(N),SE);
[/asy]
geometrytrigonometryratio
2010 PUMaC NT A4: n*phi(n) is perfect square
Source:
8/22/2011
Find the largest positive integer such that is a perfect square. ( is the number of integers , that are relatively prime to )
number theoryrelatively prime
2010 PUMaC Geometry B4: BF+DH=FH
Source:
8/21/2011
Unit square is divided into four rectangles by and , with . is parallel to and parallel to . and meet at point . Suppose , calculate the nearest integer to the degree of .
[asy]
size(100); defaultpen(linewidth(0.7)+fontsize(10));
pair D2(pair P) {
dot(P,linewidth(3)); return P;
}
// NOTE: I've tampered with the angles to make the diagram not-to-scale. The correct numbers should be 72 instead of 76, and 45 instead of 55.
pair A=(0,1), B=(0,0), C=(1,0), D=(1,1), F=intersectionpoints(A--A+2*dir(-76),B--C)[0], H=intersectionpoints(A--A+2*dir(-76+55),D--C)[0], E=F+(0,1), G=H-(1,0), P=intersectionpoints(E--F,G--H)[0];
draw(A--B--C--D--cycle);
draw(F--A--H); draw(E--F); draw(G--H);
label("",D2(A),NW);
label("",D2(B),SW);
label("",D2(C),SE);
label("",D2(D),NE);
label("",D2(E),plain.N);
label("",D2(F),S);
label("",D2(G),W);
label("",D2(H),plain.E);
label("",D2(P),SE);
[/asy]
geometryrectangletrigonometry