Putnam 2003 A5
Source:
June 23, 2011
Putnaminductioncollege contests
Problem Statement
A Dyck -path is a lattice path of upsteps and downsteps that starts at the origin and never dips below the -axis. A return is a maximal sequence of contiguous downsteps that terminates on the -axis. For example, the Dyck -path illustrated has two returns, of length and respectively. Show that there is a one-to-one correspondence between the Dyck -paths with no return of even length and the Dyck paths.\begin{picture}(165,70)
\put(-5,0){O}
\put(0,10){\line(1,0){150}}
\put(0,10){\line(1,1){30}}
\put(30,40){\line(1,-1){15}}
\put(45,25){\line(1,1){30}}
\put(75,55){\line(1,-1){45}}
\put(120,10){\line(1,1){15}}
\put(135,25){\line(1,-1){15}}
\put(0,10){\circle{1}}\put(0,10){\circle{2}}\put(0,10){\circle{3}}\put(0,10){\circle{4}}
\put(15,25){\circle{1}}\put(15,25){\circle{2}}\put(15,25){\circle{3}}\put(15,25){\circle{4}}
\put(30,40){\circle{1}}\put(30,40){\circle{2}}\put(30,40){\circle{3}}\put(30,40){\circle{4}}
\put(45,25){\circle{1}}\put(45,25){\circle{2}}\put(45,25){\circle{3}}\put(45,25){\circle{4}}
\put(60,40){\circle{1}}\put(60,40){\circle{2}}\put(60,40){\circle{3}}\put(60,40){\circle{4}}
\put(75,55){\circle{1}}\put(75,55){\circle{2}}\put(75,55){\circle{3}}\put(75,55){\circle{4}}
\put(90,40){\circle{1}}\put(90,40){\circle{2}}\put(90,40){\circle{3}}\put(90,40){\circle{4}}
\put(105,25){\circle{1}}\put(105,25){\circle{2}}\put(105,25){\circle{3}}\put(105,25){\circle{4}}
\put(120,10){\circle{1}}\put(120,10){\circle{2}}\put(120,10){\circle{3}}\put(120,10){\circle{4}}
\put(135,25){\circle{1}}\put(135,25){\circle{2}}\put(135,25){\circle{3}}\put(135,25){\circle{4}}
\put(150,10){\circle{1}}\put(150,10){\circle{2}}\put(150,10){\circle{3}}\put(150,10){\circle{4}}
\end{picture}