MathDB

5

Part of 2003 Putnam

Problems(2)

Putnam 2003 A5

Source:

6/23/2011
A Dyck nn-path is a lattice path of nn upsteps (1,1)(1, 1) and nn downsteps (1,1)(1, -1) that starts at the origin OO and never dips below the xx-axis. A return is a maximal sequence of contiguous downsteps that terminates on the xx-axis. For example, the Dyck 55-path illustrated has two returns, of length 33 and 11 respectively. Show that there is a one-to-one correspondence between the Dyck nn-paths with no return of even length and the Dyck (n1)(n - 1) paths.
\begin{picture}(165,70) \put(-5,0){O} \put(0,10){\line(1,0){150}} \put(0,10){\line(1,1){30}} \put(30,40){\line(1,-1){15}} \put(45,25){\line(1,1){30}} \put(75,55){\line(1,-1){45}} \put(120,10){\line(1,1){15}} \put(135,25){\line(1,-1){15}} \put(0,10){\circle{1}}\put(0,10){\circle{2}}\put(0,10){\circle{3}}\put(0,10){\circle{4}} \put(15,25){\circle{1}}\put(15,25){\circle{2}}\put(15,25){\circle{3}}\put(15,25){\circle{4}} \put(30,40){\circle{1}}\put(30,40){\circle{2}}\put(30,40){\circle{3}}\put(30,40){\circle{4}} \put(45,25){\circle{1}}\put(45,25){\circle{2}}\put(45,25){\circle{3}}\put(45,25){\circle{4}} \put(60,40){\circle{1}}\put(60,40){\circle{2}}\put(60,40){\circle{3}}\put(60,40){\circle{4}} \put(75,55){\circle{1}}\put(75,55){\circle{2}}\put(75,55){\circle{3}}\put(75,55){\circle{4}} \put(90,40){\circle{1}}\put(90,40){\circle{2}}\put(90,40){\circle{3}}\put(90,40){\circle{4}} \put(105,25){\circle{1}}\put(105,25){\circle{2}}\put(105,25){\circle{3}}\put(105,25){\circle{4}} \put(120,10){\circle{1}}\put(120,10){\circle{2}}\put(120,10){\circle{3}}\put(120,10){\circle{4}} \put(135,25){\circle{1}}\put(135,25){\circle{2}}\put(135,25){\circle{3}}\put(135,25){\circle{4}} \put(150,10){\circle{1}}\put(150,10){\circle{2}}\put(150,10){\circle{3}}\put(150,10){\circle{4}} \end{picture}
Putnaminductioncollege contests
Putnam 2003 B5

Source:

6/23/2011
Let AA, BB and CC be equidistant points on the circumference of a circle of unit radius centered at OO, and let PP be any point in the circle's interior. Let aa, bb, cc be the distances from PP to AA, BB, CC respectively. Show that there is a triangle with side lengths aa, bb, cc, and that the area of this triangle depends only on the distance from PP to OO.
Putnamgeometryanalytic geometrygeometric transformationrotationinequalitiescircumcircle