We call a function f:Q+→Q+ good if for all x,y∈Q+ we have: f(x)+f(y)≥4f(x+y).
a) Prove that for all good functions f:Q+→Q+ and x,y,z∈Q+f(x)+f(y)+f(z)≥8f(x+y+z)
b) Does there exists a good functions f:Q+→Q+ and x,y,z∈Q+ such that f(x)+f(y)+f(z)<9f(x+y+z)?