MathDB
Problems
Contests
National and Regional Contests
Germany Contests
Germany Team Selection Test
2011 Germany Team Selection Test
2011 Germany Team Selection Test
Part of
Germany Team Selection Test
Subcontests
(3)
3
2
Hide problems
Inequality in Functional Equation
We call a function
f
:
Q
+
→
Q
+
f: \mathbb{Q}^+ \to \mathbb{Q}^+
f
:
Q
+
→
Q
+
good if for all
x
,
y
∈
Q
+
x,y \in \mathbb{Q}^+
x
,
y
∈
Q
+
we have:
f
(
x
)
+
f
(
y
)
≥
4
f
(
x
+
y
)
.
f(x)+f(y)\geq 4f(x+y).
f
(
x
)
+
f
(
y
)
≥
4
f
(
x
+
y
)
.
a) Prove that for all good functions
f
:
Q
+
→
Q
+
f: \mathbb{Q}^+ \to \mathbb{Q}^+
f
:
Q
+
→
Q
+
and
x
,
y
,
z
∈
Q
+
x,y,z \in \mathbb{Q}^+
x
,
y
,
z
∈
Q
+
f
(
x
)
+
f
(
y
)
+
f
(
z
)
≥
8
f
(
x
+
y
+
z
)
f(x)+f(y)+f(z) \geq 8f(x+y+z)
f
(
x
)
+
f
(
y
)
+
f
(
z
)
≥
8
f
(
x
+
y
+
z
)
b) Does there exists a good functions
f
:
Q
+
→
Q
+
f: \mathbb{Q}^+ \to \mathbb{Q}^+
f
:
Q
+
→
Q
+
and
x
,
y
,
z
∈
Q
+
x,y,z \in \mathbb{Q}^+
x
,
y
,
z
∈
Q
+
such that
f
(
x
)
+
f
(
y
)
+
f
(
z
)
<
9
f
(
x
+
y
+
z
)
?
f(x)+f(y)+f(z) < 9f(x+y+z) ?
f
(
x
)
+
f
(
y
)
+
f
(
z
)
<
9
f
(
x
+
y
+
z
)?
Numbers on Vertices of A Regular n-gon
Vertices and Edges of a regular
n
n
n
-gon are numbered
1
,
2
,
…
,
n
1,2,\dots,n
1
,
2
,
…
,
n
clockwise such that edge
i
i
i
lies between vertices
i
,
i
+
1
m
o
d
n
i,i+1 \mod n
i
,
i
+
1
mod
n
. Now non-negative integers
(
e
1
,
e
2
,
…
,
e
n
)
(e_1,e_2,\dots,e_n)
(
e
1
,
e
2
,
…
,
e
n
)
are assigned to corresponding edges and non-negative integers
(
k
1
,
k
2
,
…
,
k
n
)
(k_1,k_2,\dots,k_n)
(
k
1
,
k
2
,
…
,
k
n
)
are assigned to corresponding vertices such that:
i
i
i
)
(
e
1
,
e
2
,
…
,
e
n
)
(e_1,e_2,\dots,e_n)
(
e
1
,
e
2
,
…
,
e
n
)
is a permutation of
(
k
1
,
k
2
,
…
,
k
n
)
(k_1,k_2,\dots,k_n)
(
k
1
,
k
2
,
…
,
k
n
)
.
i
i
ii
ii
)
k
i
=
∣
e
i
+
1
−
e
i
∣
k_i=|e_{i+1}-e_i|
k
i
=
∣
e
i
+
1
−
e
i
∣
indexes
m
o
d
n
\mod n
mod
n
.a) Prove that for all
n
≥
3
n\geq 3
n
≥
3
such non-zero
n
n
n
-tuples exist. b) Determine for each
m
m
m
the smallest positive integer
n
n
n
such that there is an
n
n
n
-tuples stisfying the above conditions and also
{
e
1
,
e
2
,
…
,
e
n
}
\{e_1,e_2,\dots,e_n\}
{
e
1
,
e
2
,
…
,
e
n
}
contains all
0
,
1
,
2
,
…
m
0,1,2,\dots m
0
,
1
,
2
,
…
m
.
2
1
Hide problems
Floor is Never Divisible by 6
Let
n
n
n
be a positive integer prove that
6
∤
⌊
(
28
3
−
3
)
−
n
⌋
.
6\nmid \lfloor (\sqrt[3]{28}-3)^{-n} \rfloor.
6
∤
⌊(
3
28
−
3
)
−
n
⌋
.
1
1
Hide problems
Crowded Geometry with Two Circles
Two circles
ω
,
Ω
\omega , \Omega
ω
,
Ω
intersect in distinct points
A
,
B
A,B
A
,
B
a line through
B
B
B
intersects
ω
,
Ω
\omega , \Omega
ω
,
Ω
in
C
,
D
C,D
C
,
D
respectively such that
B
B
B
lies between
C
,
D
C,D
C
,
D
another line through
B
B
B
intersects
ω
,
Ω
\omega , \Omega
ω
,
Ω
in
E
,
F
E,F
E
,
F
respectively such that
E
E
E
lies between
B
,
F
B,F
B
,
F
and
F
E
=
C
D
FE=CD
FE
=
C
D
. Furthermore
C
F
CF
CF
intersects
ω
,
Ω
\omega , \Omega
ω
,
Ω
in
P
,
Q
P,Q
P
,
Q
respectively and
M
,
N
M,N
M
,
N
are midpoints of the arcs
P
B
,
Q
B
PB,QB
PB
,
QB
. Prove that
C
N
M
F
CNMF
CNMF
is a cyclic quadrilateral.