MathDB
Flanders 5 ('95)

Source:

September 7, 2003
complex numbers

Problem Statement

Given a regular nn-gon inscribed in a circle of radius 1, where n>3n > 3. Define G(n)G(n) as the average length of the diagonals of this nn-gon. Prove that if n,G(n)4πn \rightarrow \infty, G(n) \rightarrow \frac{4}{\pi}.