MathDB
Problems
Contests
National and Regional Contests
Belgium Contests
Flanders Math Olympiad
1995 Flanders Math Olympiad
4
4
Part of
1995 Flanders Math Olympiad
Problems
(1)
Flanders 5 ('95)
Source:
9/7/2003
Given a regular
n
n
n
-gon inscribed in a circle of radius 1, where
n
>
3
n > 3
n
>
3
. Define
G
(
n
)
G(n)
G
(
n
)
as the average length of the diagonals of this
n
n
n
-gon. Prove that if
n
→
∞
,
G
(
n
)
→
4
π
n \rightarrow \infty, G(n) \rightarrow \frac{4}{\pi}
n
→
∞
,
G
(
n
)
→
π
4
.
complex numbers